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Lecture 6: Seifert-van Kampen Theorem
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Seifert-van Kampen Theorem gives a very effective method to
compute fundamental groups of a space from its building blocks.
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Theorem (Seifert-van Kampen Theorem, Groupoid version)

Let X = UU V where U, V C X are open. Then the diagram

(UM V) — T1(U)

|
1(v)

I(X)
is a pushout in the category Groupoid.
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Let C be a groupoid fitting into the commutative diagram
Inunv)—-=I1(v)

(V)

and we need to show that

mun v

1I(U)
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Uniqueness: Let v: /| — X be a path in X with x; = v(t). We
subdivide / (by its compactness) into

O=t)y<t < - <tp=1
such that 7; := y(ti_1, t;) lies entirely in U or V. Then

F([v]) = F[vm]) - - - F(Im))

is determined uniquely in C as each term is.

Existence: Given a path ~y, we can define F([y]) using a subdivision
of v, where the result does not depend on the choice of the
subdivision (by the definition of pushout). We need to show that
this is well-defined on homotopy class.
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This follows from a refined double subdivision of [ x [, as shown'in
the picture below. Each square represents a homotopy lying
entirely in either U or V and combining them together gives the
required homotopy.

F(y1) = F(y1 % ixy) = Flix, *72) = F(72)

Al

72 ]
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Theorem (Seifert-van Kampen Theorem, Group version)

Let X= UU V where U,V C X are open and U, V, UN V are path
connected. Let xg € UN V. Then the following diagram

m(UNV,x0) —m1(U, x0)

|
m(V, x0)

7T(X, Xo)
is a pushout in the category Group.
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Denote by G the groupoid with one object for a group G.

For each x € X, we fix a choice of
7] € Hom(x0, X)

such that vy lies entirely in U when x € U and ~ lies entirely in V
when x € V. Note that ~, lies entirely in UN V when x& UN V.
This can be achieved since U, V, UN V are all path connected.
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Consider the following functors

H ( ) — 7T1(U Xo)
(V) — 7T1(V Xo)
IL(UNV)—m(UNV,x)
—1

Y Yy XY * Vs Y € Hom(xg, x2).
These functors are all retracts in Groupoid, in other words,

7T1(U,Xg) — Hl(U) — 7T1(U,X0)
T (Vi x0) = (V) = m1(V; x0)
m(UNV,x) = 11 (UN V) = m(UN V, x)

are all identity functors.
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Suppose there is a group G that fits into the following
commutative diagram:

11 (V)

IL(UNV)

I (V)

(U, xp) =<—— m(UN V, xp) m1(V, x0)

[o)
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By Seifert-van Kampen Theorem (Groupoid version),

11, (U) I (UnV) I, (V)
m1 (U, x0) 1 (X) m1(V, x0)
|

=
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Thus, we obtain a morphism
F
7T1(X,X0) — Hl()() — Q
which fits into a commutative diagram

WI(UO V7X0)

Wl(Ua XO)

(V. xp) (X, x0)

G

This leads to the required diagram in the category Group.

O
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We also have the relative version.

Let A C X, we define I1; (X, A) be the full subcategory of II; (X)
consists of objects in A.

For instance, when A = {xo}, we have

H1 (X, X()) = T (X, X()).
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Let X= UU V, U, V be open and A C X intersects each path

connected components of U, V, UN V. Then we have a pushout

I, (UN V, A) —= II; (U, A)
l l

I, (V, A) II; (X, A).
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Example

For the Figure-8, which is Sty st

It can be decomposed into U, V as follows

Since U, V are homotopic to S', and UN V is homotopic to a
point, Seifert-van Kampen Theorem implies

7T1(51\/51) =7T1(51)*7T1(51) =7Z%Z.
In general, we have 71 (\/, S') =Zx - xZ.

n
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Example

Consider the 2-sphere S?> = D; U Dy where D; are open disks and

Dy = D1 N Dy is an annulus. D; is an open neighbourhood of X;.

52

Since m1(D1) = 71(D2) = 1,71(Dg) = m1(S') = Z, we deduce that

m(§H) =(1%1)/Z =1.
Similar argument shows that

m(S8") =1, n>2.
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Let us identiy X = S! with the unit circle in R?. Consider

U={(xy) €S |y>-1/2},

V={(xy) €S |y<1/2}
and A = {(£1,0)}. Then we obtain a pushout

L (UNV,A) ——11L1(U, A)
| |

L, (V, A) I, (S, A).
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This implies that the groupoid II; (S!, A) contains two objects
A1 = (1,0), Ay = (—1,0) with morphisms

Homyy, (st 4)(A1, A1) = {(7=7+)"}nez
Homyy, (st 4y (A1, A2) = {(v+7-) "7+ b nez
Homyy, 51,4y (A2, A1) = {(7=74)"7-}nez
Homyy, (51, 4)(A2, A2) = {(747-)"}nez

Here ~4 represent the semi-circle from (1,0) to (—1,0)
anti-clockwise, and ~_ represent the semi-circle from (—1,0) to
(1,0) anti-clockwise.
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Example

Consider the closed orientable surface X, of genus g, which admits
a polygon presentation

P=ayba; b - agbga; b,
Here is a figure for g = 2.
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The edges of the polygon form Vo, = \/?:g1 St

Let U be the interior of the polygon and V be a small open
neighbourhood of Vo,. UN V'is an annulus, which is homotopy to
S1 with generator P as above. Thus

2g
m1(3g) = (HZ) «0/Z
i=1

=(aj,bi|i=1,...,8)/ (alblaflbfl e agbgag_lbgl).
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Using the polygon presentation P = a?, we can similarly compute

71 (RP?) = Z/27Z



Algebraic Topology 2020 Spring@ SL

The Jordan Curve Theorem
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We give an application of Seifert-van Kampen Theorem to prove
the Jordan Curve Theorem. This is an example which sounds
totally obvious intuitively, but turns out to be very difficult to
prove rigorously.
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A simple closed curve is a subset of R? (or $?) which is
homeomorphic to the circle S'.

Theorem (The Jordan Curve Theorem)

Let C be a simple closed curve in the sphere S?. Then the
complement of C has exactly two connected components.

u}
)
I
il
it
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Alexander’s Horned Sphere
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Wild arc in R3
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We sketch a proof here. Since S? is locally path connected, we
would not distinguish connected and path connected here.

By an arc, we mean a subset of S? which is homeomorphic to the
interval I. We first show

if Ais an arc in S?, then S?\A is connected.
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In fact, assume there are two points {a, b} which are disconnected
in SQ\A. Let us subdivide A = A; U Ay into two intervals where
A1 =[0,1/2], A2 = [1/2,1] using the homeomorphism A = [0, 1].

We argue that a, b are disconnected in either S*\ A; or S$?\ As.

Let us choose a set D which contains one point from each
connected component of S*\ A and such that {a, b} C D.

Apply Seifert-van Kampen Theorem to

Vi=5"\A, Vo=S5"\A; VinV,=S\A
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We obtain a pushout in Groupoid

Hl(Vl N Vs, D) 4>H1(V2, D)

| |

II;(V1, D) 1, (Y, D).

Here Y = V4 U V; is the complement of a point in S?. If {a, b} are
connected in both Vi and V5, then the pushout implies that there
exists a nontrivial morphism a — a in II;(Y, D) by a composition

in V; inViNV. in V.
a ™St pETE pS

But this can not true since Y'is contractible. So let us assume a, b
are disconnected in V] = 52\A1. Run the above process replacing
A by Ai, and keep doing this, we end up with contradiction in the
limit. This proves our claim above for the arc.
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Secondly, we show
the complement of Cin S? is disconnected.

Otherwise, assume 52\C is connected. Let us divide C= A; U Ay
into two intervals A, A2 which intersect at two endpoints {a, b}.

= S\ Ay, Uy = S®\ Ay, UiNUs = S?\C, X = U,UU, = S*\{a, b}.

Since Uy, U, U; N Uy are all connected, Seifert-van Kampen
Theorem leads to a pushout in Group

7T1(U1 N U2) 4>7T1(U2)

| |

7T1(U1) 4>7T1()<).

Observe 71 (X) = Z. We show both 71 (U;) — 71 (X) are trivial.
This would lead to a contradiction.
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Let us identify S = R? U {oo} and assume a = 0, b = oo, so A; is
parametrized by a path a from 0 to co. Let v be an arbitrary loop
in U1, we need to show « becomes trivial in X. Let R > 0 be
sufficient large such that -y is contained in the ball of radius R
centered at the origin in R?. Consider the homotopy

F(t,s) = (1) — als), 7s:= F(=9).

We have 79 = . Assume «(ty) > R, then 4, lies inside the ball of
radius R centered at «(tp), which is contractible in X. This implies
v is trivial in X. The same argument applies to As.
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Finally, we show
the complement of Cin S? has exactly two connected components.

Let C= A1 UAy and Uy, Us as in the previous step. We have a
pushout in Groupoid

Hl(Ul N UQ) — Hl(UQ)

| l

I1; (Uy) I1; (X).
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Assume S?\ C has at least three components, so we can choose

p1, P2, p3 from three different connected components. Since Uy, Us
are connected, and p;'s are disconnected in U; N Us, the following
two compositions

in Uy in UiNUs inU in Up in UiNUs in U

p1 p1, pP1 —> p3 p3 — p1

give two free generators in w1 (X, p1).

But 71 (X, p1) = Z. This is a contradiction. O



