Lecture 6: Seifert-van Kampen Theorem Seifert-van Kampen Theorem gives a very effective method to compute fundamental groups of a space from its building blocks. # Theorem (Seifert-van Kampen Theorem, Groupoid version) Let $X = U \cup V$ where $U, V \subset X$ are open. Then the diagram $$\Pi(U \cap V) \longrightarrow \Pi(U)$$ $$\downarrow \qquad \qquad \downarrow$$ $$\Pi(V) \longrightarrow \Pi(X)$$ is a pushout in the category $\underline{\mathbf{Groupoid}}$. Let ${\mathcal C}$ be a groupoid fitting into the commutative diagram $$\Pi(U \cap V) \longrightarrow \Pi(U)$$ $$\downarrow \qquad \qquad \downarrow$$ $$\Pi(V) \longrightarrow \mathcal{C}$$ and we need to show that Uniqueness: Let $\gamma\colon I\to X$ be a path in X with $x_t=\gamma(t)$. We subdivide I (by its compactness) into $$0 = t_0 < t_1 < \dots < t_m = 1$$ such that $\gamma_i := \gamma(t_{i-1}, t_i)$ lies entirely in U or V. Then $$F([\gamma]) = F([\gamma_m]) \cdots F([\gamma_1])$$ is determined uniquely in $\ensuremath{\mathcal{C}}$ as each term is. Existence: Given a path γ , we can define $F([\gamma])$ using a subdivision of γ , where the result does not depend on the choice of the subdivision (by the definition of pushout). We need to show that this is well-defined on homotopy class. This follows from a refined double subdivision of $I \times I$, as shown in the picture below. Each square represents a homotopy lying entirely in either U or V and combining them together gives the required homotopy. $$F(\gamma_1) \simeq F(\gamma_1 \star i_{x_0}) \simeq F(i_{x_1} \star \gamma_2) \simeq F(\gamma_2)$$ # Theorem (Seifert-van Kampen Theorem, Group version) Let $X = U \cup V$ where $U, V \subset X$ are open and $U, V, U \cap V$ are path connected. Let $x_0 \in U \cap V$. Then the following diagram $$\begin{array}{ccc} \pi_1(U \cap V, x_0) & \longrightarrow & \pi_1(U, x_0) \\ \downarrow & & \downarrow \\ \pi(V, x_0) & \longrightarrow & \pi(X, x_0) \end{array}$$ is a pushout in the category **Group**. Denote by \underline{G} the groupoid with one object for a group G. For each $x \in X$, we fix a choice of $$[\gamma_x] \in \operatorname{Hom}(x_0, x)$$ such that γ_x lies entirely in U when $x \in U$ and γ_x lies entirely in V when $x \in V$. Note that γ_x lies entirely in $U \cap V$ when $x \in U \cap V$. This can be achieved since $U, V, U \cap V$ are all path connected. ## Consider the following functors $$\Pi_{1}(U) \to \underline{\pi_{1}(U, x_{0})}$$ $$\Pi_{1}(V) \to \underline{\pi_{1}(V, x_{0})}$$ $$\Pi_{1}(U \cap V) \to \underline{\pi_{1}(U \cap V, x_{0})}$$ $$\gamma \mapsto \overline{\gamma_{x_{2}}^{-1}} \star \gamma \star \gamma_{x_{1}}, \quad \gamma \in \text{Hom}(x_{1}, x_{2}).$$ These functors are all retracts in **Groupoid**, in other words, $$\frac{\pi_1(U, x_0)}{\underline{\pi_1(V, x_0)}} \to \Pi_1(U) \to \underline{\pi_1(U, x_0)}$$ $$\underline{\pi_1(V, x_0)} \to \Pi_1(V) \to \underline{\pi_1(V, x_0)}$$ $$\underline{\pi_1(U \cap V, x_0)} \to \Pi_1(U \cap V) \to \underline{\pi_1(U \cap V, x_0)}$$ are all identity functors. Suppose there is a group G that fits into the following commutative diagram: # By Seifert-van Kampen Theorem (Groupoid version), #### Thus, we obtain a morphism $$\underline{\pi_1(X,x_0)} \hookrightarrow \Pi_1(X) \xrightarrow{F} \underline{G}$$ which fits into a commutative diagram This leads to the required diagram in the category **Group**. #### We also have the relative version. #### Definition Let $A \subset X$, we define $\Pi_1(X,A)$ be the full subcategory of $\Pi_1(X)$ consists of objects in A. For instance, when $A = \{x_0\}$, we have $$\Pi_1(X, x_0) = \pi_1(X, x_0).$$ #### Theorem Let $X = U \cup V$, U, V be open and $A \subset X$ intersects each path connected components of U, V, $U \cap V$. Then we have a pushout $$\Pi_{1}(U \cap V, A) \longrightarrow \Pi_{1}(U, A)$$ $$\downarrow \qquad \qquad \downarrow$$ $$\Pi_{1}(V, A) \longrightarrow \Pi_{1}(X, A).$$ For the Figure-8, which is $S^1 \vee S^1$. $$S^1 \vee S^1 = \bigcirc$$ It can be decomposed into U, V as follows $$U = \bigvee$$ $V = \bigvee$ Since U, V are homotopic to S^1 , and $U \cap V$ is homotopic to a point, Seifert-van Kampen Theorem implies $$\pi_1(S^1 \vee S^1) = \pi_1(S^1) \star \pi_1(S^1) = \mathbb{Z} \star \mathbb{Z}.$$ In general, we have $\pi_1(\bigvee_{i=1}^n S^1) = \underbrace{\mathbb{Z} \star \cdots \star \mathbb{Z}}_n$. Consider the 2-sphere $S^2 = D_1 \cup D_2$ where D_i are open disks and $D_0 = D_1 \cap D_2$ is an annulus. D_i is an open neighbourhood of X_i . Since $$\pi_1(D_1)=\pi_1(D_2)=1, \pi_1(D_0)=\pi_1(S^1)=\mathbb{Z}$$, we deduce that $$\pi_1(S^2)=(1\star 1)/\mathbb{Z}=1.$$ Similar argument shows that $$\pi_1(S^n) = 1, \quad n \ge 2.$$ Let us identiy $X = S^1$ with the unit circle in \mathbb{R}^2 . Consider $$U = \{(x, y) \in S^1 \mid y > -1/2\}, \quad V = \{(x, y) \in S^1 \mid y < 1/2\}$$ and $A = \{(\pm 1, 0)\}$. Then we obtain a pushout $$\Pi_{1}(U \cap V, A) \longrightarrow \Pi_{1}(U, A)$$ $$\downarrow \qquad \qquad \downarrow$$ $$\Pi_{1}(V, A) \longrightarrow \Pi_{1}(S^{1}, A).$$ This implies that the groupoid $\Pi_1(S^1,A)$ contains two objects $A_1=(1,0), A_2=(-1,0)$ with morphisms $$\operatorname{Hom}_{\Pi_{1}(S^{1},A)}(A_{1},A_{1}) = \{(\gamma_{-}\gamma_{+})^{n}\}_{n \in \mathbb{Z}}$$ $$\operatorname{Hom}_{\Pi_{1}(S^{1},A)}(A_{1},A_{2}) = \{(\gamma_{+}\gamma_{-})^{n}\gamma_{+}\}_{n \in \mathbb{Z}}$$ $$\operatorname{Hom}_{\Pi_{1}(S^{1},A)}(A_{2},A_{1}) = \{(\gamma_{-}\gamma_{+})^{n}\gamma_{-}\}_{n \in \mathbb{Z}}$$ $$\operatorname{Hom}_{\Pi_{1}(S^{1},A)}(A_{2},A_{2}) = \{(\gamma_{+}\gamma_{-})^{n}\}_{n \in \mathbb{Z}}.$$ Here γ_+ represent the semi-circle from (1,0) to (-1,0) anti-clockwise, and γ_- represent the semi-circle from (-1,0) to (1,0) anti-clockwise. Consider the closed orientable surface $\Sigma_{\it g}$ of genus $\it g$, which admits a polygon presentation $$P = a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1}.$$ Here is a figure for g = 2. The edges of the polygon form $V_{2g} = \bigvee_{i=1}^{2g} S^1$. Let U be the interior of the polygon and V be a small open neighbourhood of V_{2g} . $U \cap V$ is an annulus, which is homotopy to S_1 with generator P as above. Thus $$\pi_1(\Sigma_g) = \left(\coprod_{i=1}^{2g} \mathbb{Z} \right) \star 0/\mathbb{Z}$$ $$= \langle a_i, b_i \mid i = 1, \dots, g \rangle / \left(a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} \right).$$ Using the polygon presentation $P = a^2$, we can similarly compute $$\pi_1(\mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z}$$ ## The Jordan Curve Theorem We give an application of Seifert-van Kampen Theorem to prove the Jordan Curve Theorem. This is an example which sounds totally obvious intuitively, but turns out to be very difficult to prove rigorously. ## Definition A simple closed curve is a subset of \mathbb{R}^2 (or S^2) which is homeomorphic to the circle S^1 . # Theorem (The Jordan Curve Theorem) Let C be a simple closed curve in the sphere S^2 . Then the complement of C has exactly two connected components. # Alexander's Horned Sphere # Wild arc in \mathbb{R}^3 We sketch a proof here. Since S^2 is locally path connected, we would not distinguish connected and path connected here. By an arc, we mean a subset of S^2 which is homeomorphic to the interval I. We first show if A is an arc in S^2 , then $S^2 \setminus A$ is connected. In fact, assume there are two points $\{a,b\}$ which are disconnected in $S^2 \setminus A$. Let us subdivide $A = A_1 \cup A_2$ into two intervals where $A_1 = [0,1/2], A_2 = [1/2,1]$ using the homeomorphism A = [0,1]. We argue that a, b are disconnected in either $S^2 \backslash A_1$ or $S^2 \backslash A_2$. Let us choose a set D which contains one point from each connected component of $S^2 \setminus A$ and such that $\{a, b\} \subset D$. Apply Seifert-van Kampen Theorem to $$V_1 = S^2 \backslash A_1, \quad V_2 = S^2 \backslash A_2, \quad V_1 \cap V_2 = S^2 \backslash A.$$ #### We obtain a pushout in **Groupoid** $$\Pi_{1}(V_{1} \cap V_{2}, D) \longrightarrow \Pi_{1}(V_{2}, D)$$ $$\downarrow \qquad \qquad \downarrow$$ $$\Pi_{1}(V_{1}, D) \longrightarrow \Pi_{1}(Y, D).$$ Here $Y=V_1\cup V_2$ is the complement of a point in S^2 . If $\{a,b\}$ are connected in both V_1 and V_2 , then the pushout implies that there exists a nontrivial morphism $a\to a$ in $\Pi_1(Y,D)$ by a composition $$a \stackrel{\mathsf{in}}{\rightarrow} \stackrel{V_1}{\rightarrow} b \stackrel{\mathsf{in}}{=} \stackrel{V_1}{\rightarrow} \stackrel{V_2}{\rightarrow} a$$ But this can not true since Y is contractible. So let us assume a,b are disconnected in $V_1 = S^2 \backslash A_1$. Run the above process replacing A by A_1 , and keep doing this, we end up with contradiction in the limit. This proves our claim above for the arc. #### Secondly, we show # the complement of C in S^2 is disconnected. Otherwise, assume $S^2 \setminus C$ is connected. Let us divide $C = A_1 \cup A_2$ into two intervals A_1, A_2 which intersect at two endpoints $\{a, b\}$. $$U_1 = S^2 \setminus A_1, U_2 = S^2 \setminus A_2, U_1 \cap U_2 = S^2 \setminus C, X = U_1 \cup U_2 = S^2 \setminus \{a, b\}.$$ Since $U_1, U_2, U_1 \cap U_2$ are all connected, Seifert-van Kampen Theorem leads to a pushout in $\underline{\mathbf{Group}}$ $$\begin{array}{ccc} \pi_1(U_1 \cap U_2) & \longrightarrow \pi_1(U_2) \\ \downarrow & & \downarrow \\ \pi_1(U_1) & \longrightarrow \pi_1(X). \end{array}$$ Observe $\pi_1(X) = \mathbb{Z}$. We show both $\pi_1(U_i) \to \pi_1(X)$ are trivial. This would lead to a contradiction. Let us identify $S^2=\mathbb{R}^2\cup\{\infty\}$ and assume $a=0,b=\infty$, so A_1 is parametrized by a path α from 0 to ∞ . Let γ be an arbitrary loop in U_1 , we need to show γ becomes trivial in X. Let R>0 be sufficient large such that γ is contained in the ball of radius R centered at the origin in \mathbb{R}^2 . Consider the homotopy $$F(t,s) = \gamma(t) - \alpha(s), \quad \gamma_s := F(-,s).$$ We have $\gamma_0=\gamma$. Assume $\alpha(t_0)>R$, then γ_{t_0} lies inside the ball of radius R centered at $\alpha(t_0)$, which is contractible in X. This implies γ is trivial in X. The same argument applies to A_2 . ## Finally, we show the complement of C in S^2 has exactly two connected components. Let $C = A_1 \cup A_2$ and U_1, U_2 as in the previous step. We have a pushout in **Groupoid** $$\Pi_{1}(U_{1} \cap U_{2}) \longrightarrow \Pi_{1}(U_{2}) \downarrow \qquad \qquad \downarrow \Pi_{1}(U_{1}) \longrightarrow \Pi_{1}(X).$$ Assume $S^2 \setminus C$ has at least three components, so we can choose p_1, p_2, p_3 from three different connected components. Since U_1, U_2 are connected, and p_i 's are disconnected in $U_1 \cap U_2$, the following two compositions $$p_1 \stackrel{\text{in } U_1}{\longrightarrow} p_2 \stackrel{\text{in } U_1 \cap U_2}{=} p_2 \stackrel{\text{in } U_2}{\longrightarrow} p_1, \quad p_1 \stackrel{\text{in } U_1}{\longrightarrow} p_3 \stackrel{\text{in } U_1 \cap U_2}{=} p_3 \stackrel{\text{in } U_2}{\longrightarrow} p_1$$ give two free generators in $\pi_1(X, p_1)$. But $$\pi_1(X, p_1) = \mathbb{Z}$$. This is a contradiction.